59 research outputs found

    Diversity of flux avalanche patterns in superconducting films

    Full text link
    The variety of morphologies in flux patterns created by thermomagnetic dendritic avalanches in type-II superconducting films is investigated using numerical simulations. The avalanches are triggered by introducing a hot spot at the edge of a strip-shaped sample, which is initially prepared in a partially penetrated Bean critical state by slowly ramping the transversely applied magnetic field. The simulation scheme is based on a model accounting for the nonlinear and nonlocal electrodynamics of superconductors in the transverse geometry. By systematically varying the parameters representing the Joule heating, heat conduction in the film, and heat transfer to the substrate, a wide variety of avalanche patterns is formed, and quantitative characterization of areal extension, branch width etc. is made. The results show that branching is suppressed by the lateral heat diffusion, while large Joule heating gives many branches, and heat removal into the substrate limits the areal size. The morphology shows significant dependence also on the initial flux penetration depth.Comment: 6 pages, 6 figure

    Magnetostrictive behaviour of thin superconducting disks

    Full text link
    Flux-pinning-induced stress and strain distributions in a thin disk superconductor in a perpendicular magnetic field is analyzed. We calculate the body forces, solve the magneto-elastic problem and derive formulas for all stress and strain components, including the magnetostriction ΔR/R\Delta R/R. The flux and current density profiles in the disk are assumed to follow the Bean model. During a cycle of the applied field the maximum tensile stress is found to occur approximately midway between the maximum field and the remanent state. An effective relationship between this overall maximum stress and the peak field is found.Comment: 8 pages, 6 figures, submitted to Supercond. Sci. Technol., Proceed. of MEM03 in Kyot

    Flux Penetration in Superconducting Strip with Edge-Indentation

    Full text link
    The flux penetration near a semicircular indentation at the edge of a thin superconducting strip placed in a transverse magnetic field is investigated. The flux front distortion due to the indentation is calculated numerically by solving the Maxwell equations with a highly nonlinear E(j)E(j) law. We find that the excess penetration, Δ\Delta, can be significantly (∼\sim 50%) larger than the indentation radius r0r_0, in contrast to a bulk supercondutor in the critical state where Δ=r0\Delta=r_0. It is also shown that the flux creep tends to smoothen the flux front, i.e. reduce Δ\Delta. The results are in very good agreement with magneto-optical studies of flux penetration into an YBa2_2Cu3_3Ox_x film having an edge defect.Comment: 5 pages, 7 figure

    Flux Dendrites of Opposite Polarity in Superconducting MgB2_2 rings observed with magneto-optical imaging

    Full text link
    Magneto-optical imaging was used to observe flux dendrites with opposite polarities simultaneously penetrate superconducting, ring-shaped MgB2_2 films. By applying a perpendicular magnetic field, branching dendritic structures nucleate at the outer edge and abruptly propagate deep into the rings. When these structures reach close to the inner edge, where flux with opposite polarity has penetrated the superconductor, they occasionally trigger anti-flux dendrites. These anti-dendrites do not branch, but instead trace the triggering dendrite in the backward direction. Two trigger mechanisms, a non-local magnetic and a local thermal, are considered as possible explanations for this unexpected behaviour. Increasing the applied field further, the rings are perforated by dendrites which carry flux to the center hole. Repeated perforations lead to a reversed field profile and new features of dendrite activity when the applied field is subsequently reduced.Comment: 6 pages, 6 figures, accepted to Phys. Rev.

    Symmetry of the remanent state flux distribution in superconducting thin strips: Probing the critical state

    Full text link
    The critical-state in a thin strip of YBaCuO is studied by magneto-optical imaging. The distribution of magnetic flux density is shown to have a specific symmetry in the remanent state after a large applied field. The symmetry was predicted [PRL 82, 2947 (1999)] for any Jc(B), and is therefore suggested as a simple tool to verify the applicability of the critical-state model. At large temperatures we find deviations from this symmetry, which demonstrates departure from the critical-state behavior. The observed deviations can be attributed to an explicit coordinate dependence of jcj_c since both a surface barrier, and flux creep would break the symmetry in a different way.Comment: 5 pages including 5 eps figures, submitted to PR
    • …
    corecore